Math 10B with Professor Stankova
Worksheet, Discussion \#4; Tuesday, 2/5/2019
GSI name: Roy Zhao

Binomial Identities

Concepts

1. We can write $C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!}$. One basic identity we have is the binomial theorem which says

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} .
$$

There are other equalities that can be proven either algebraically or combinatorially; by counting the same team making strategy in two different ways.

Examples

2. Show that $\binom{n}{r}\binom{r}{k}=\binom{n}{k}\binom{n-k}{r-k}$.

Solution: First, we can do a combinatorial reasoning. Suppose that I have n people and I want to choose an r person team and inside that team, a k person special committee. One way to count the number of ways to do this is first I choose the r person team, and I can do this $\binom{n}{r}$ ways. Then, from within this team, I choose the committee and this can occur in $\binom{r}{k}$ ways. Thus, this gives a total of $\binom{n}{r}\binom{r}{k}$ ways.
Another way to do this is first choose the committee and this can occur in $\binom{n}{k}$ ways. After I choose the committee, I can choose the remaining people on the team and there are $r-k$ people left to choose. But now there are only $n-k$ people left to choose from since we chose k of them for the committee. Thus, we can complete the team in $\binom{n-k}{r-k}$ ways. This gives a total of $\binom{n}{k}\binom{n-k}{r-k}$ different ways to do this. Since these are two ways of counting the same number of ways, they are equal and

$$
\binom{n}{r}\binom{r}{k}=\binom{n}{k}\binom{n-k}{r-k}
$$

Algebraically, we have

$$
\binom{n}{r}\binom{r}{k}=\frac{n!}{r!(n-r)!} \frac{r!}{k!(r-k)!}=\frac{n!}{(n-r)!k!(r-k)!}
$$

And the other term is

$$
\binom{n}{k}\binom{n-k}{r-k}=\frac{n!}{k!(n-k)!} \frac{(n-k)!}{(r-k)!(n-k-(r-k))!}=\frac{n!}{k!(r-k)!(n-r)!}=\binom{n}{r}\binom{r}{k}
$$

3. Prove that $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.

Solution: The binomial theorem tells us that $(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$. Let $x=1$, then we get the desired equality.

Problems

4. TRUE False $\sum_{k=1}^{100} k\binom{100}{k}=100 \cdot 2^{99}$.

Solution: This is an example of the binomial equality $\sum_{k=1}^{n} k\binom{n}{k}=n 2^{n-1}$.
5. Prove that $\sum_{k=0}^{n} 2^{k}\binom{n}{k}=3^{n}$.

Solution: Plug in $x=2$ to the binomial theorem $(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$.
6. What is the coefficient of $x^{2} y^{3}$ in $(2 x-3 y)^{5}$?

Solution: The coefficient is $\binom{5}{2}(2 x)^{2}(-3 y)^{3}=10 \cdot 2^{2} \cdot(-3)^{3}=-1080$.
7. Prove that $k\binom{n}{k}=n\binom{n-1}{k-1}$ in two different ways.

Solution: Algebraically, we play with factorials to get

$$
k\binom{n}{k}=\frac{n!k}{k!(n-k)!}=\frac{n!k}{k(k-1)!(n-k)!}=\frac{n!}{(k-1)!(n-k)!}
$$

and

$$
n\binom{n-1}{k-1}=\frac{n(n-1)!}{(k-1)!(n-k)!}=\frac{n!}{(k-1)!(n-k)!}=k\binom{n}{k}
$$

Then combinatorially, we can think of this as creating a team of k people out of n total with a designated captain. We can first pick our team in $\binom{n}{k}$ ways then choose a captain out of the k people which gives $k\binom{n}{k}$ ways. The other way is to first pick the captain then pick the rest of the team which is $k-1$ people out of the $n-1$ remaining people which gives $n\binom{n-1}{k-1}$. Since both count the same thing, they must be equal.
8. What is the coefficient of $x^{4} y^{9}$ in $\left(2 x^{2}+5 y^{3}\right)^{5}$?

Solution: A general term is $\binom{5}{k}\left(2 x^{2}\right)^{k}\left(5 y^{3}\right)^{5-k}=\binom{5}{k} 2^{k} 5^{5-k} x^{2 k} y^{3(5-k)}$. Matching powers for x, y we get $2 k=4$ and $3(5-k)=9$ which both lead to $k=2$. Thus, the coefficient is

$$
\binom{5}{2} 2^{2} 5^{5-2}=10 \cdot 4 \cdot 5^{3}=5000
$$

9. (Challenge) What is the coefficient of $x^{2} y^{2} z^{2}$ in $(x+y+z)^{6}$?

Solution: We can write this as $(x+(y+z))^{6}$ and so for the term with x^{2}, we have $\binom{6}{2} x^{2}(y+z)^{4}$. The term with $y^{2} z^{2}$ in $(y+z)^{4}$ is $\binom{4}{2} y^{2} z^{2}$ so the term with $x^{2} y^{2} z^{2}$ is $\binom{6}{2}\binom{4}{2}=90$.

Permutations and Combinations

Examples

10. How many ways can 6 people play in 3 tennis matches if the matches occur at different times? If they occur at the same time (and are indistinguishable)?

Solution: If it is three different times, there are $\binom{6}{2}$ ways for the first match, $\binom{4}{2}$ for the second and $\binom{2}{2}$ choices for the last so a total of

$$
\binom{6}{2}\binom{4}{2}\binom{2}{2}=\frac{6!}{2!2!2!} .
$$

If they occur at the same time, then the order of the three matches does not matter so we need to divide by 3 ! so our final answer is

$$
\frac{6!}{2!2!2!3!}
$$

Problems

11. How many ways are there to rearrange the letters of ZYZZYX?

Solution: There are 3 repeated Z 's and 2 repeated Y 's so $\frac{6!}{3!2!}=60$.
12. How many ways can we distribute 12 different cookies to 3 people if each person gets 3 (there are 3 left over)?

Solution: We give the first person 3 cookies and there are $\binom{12}{3}$ ways to do this. Then we give the second person 3 and there are $\binom{9}{3}$ ways to do this. Finally, we give the last person 3 and there are $\binom{6}{3}$ ways to do this. So the answer is

$$
\binom{12}{3}\binom{9}{3}\binom{6}{3} .
$$

13. How many ways can we separate 12 different cookies into 4 piles of 3 if the piles are indistinguishable?

Solution: We first assume that they are distinguishable and using the logic from before, there are

$$
\binom{12}{3}\binom{9}{3}\binom{6}{3}\binom{3}{3}=\frac{12!}{3!3!3!3!}
$$

ways to do this. Then, we need to divide by 4 ! because the 4 piles are indistinguishable so any ordering we do will be the same. So the final answer is

$$
\frac{12!}{3!3!3!3!4!}
$$

